INntroducing
Symbolic# =

.

Execution

Slide deck courtesy

Software has bugs

o [0 find them, we use testing and code reviews

e But some bugs are still missed
. Rare features
. Rare circumstances
. Nondeterminism

Static analysis . @/

« Can analyze all possible runs of a program
. An explosion of interesting ideas and tools
. Commercial companies sell, use static analysis
. Great potential to improve software quality ' i

H@? |

« But: Can it find deep, difficult bugs?
. Our experience: yes, but not often 4 L
. Commercial viability implies you must deal with developer
confusion, false positives, error management, ..
. This means that companies specifically aim to keep the
false positive rate down
They often do this by purposely missing bugs, to keep
the analysis simpler

One issue: Abstraction

o Abstraction lets us model all possible runs
But abstraction introduces conservatism

- *=sensitivities add precision, to deal with this
. * = flow-, context-, path-, efc.
But more precise abstractions are more expensive

Challenges scalability
Still have false alarms or missed bugs

Static analysis abstraction # developer abstraction
Because the developer didn't have them in minad

Symbolic execution

A middle ground

e [esting works: reported bugs are real bugs
But, each test only explores one possible execution
assert(f(3) == 5)
In short, complete, but not sound
. We hope test cases generalize, but no guarantees

- Symbolic execution generalizes testing
"More sound” than testing

. Allows unknown symbolic variables a in evaluation
-y =aqa; assert(f(y) == 2*y-1);
lon path depends on unknown, conceptually

IT execu

fork symr

DO

IC executor

int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }

Symbolic execution example

inta=q,b=0p,c=Y; x=0, y=0, z=0
// symbolic
iNtx=0,y=0, z=0;
if (a) {
X = -2;
}
if (b<5){
if (la&&c) {y=1;}
Z=2;

© 0N Ok WD

10. }
11. assert(x+y+z != 3) an(R<d)

—AA(B<B)AY

X
—aA(B<B)AY

path condition

INsignt

« Each symbolic execution path stands for many

actual program runs
In fact, exactly the set of runs whose concrete values
satisty the path condition

« [hus, we can cover a lot more of the program’s
execution space than testing

e Viewed as a static analysis, symbolic execution is
. Complete, but not sound (usually doesn’t terminate)
Path, flow, and context sensitive

A Little History

1he 1dea Is an old one

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT—-
a formal system for testing and debugging programs by
symbolic execution. In ICRS, pages 234-245, 1975.

James C. King. Symbolic execution and program testing.
CACM, 19(7):385-394, 1976. (most cited)

Leon J. Osterweil and Lloyd D. Fosdick. Program testing
techniques using simulated execution. In ANSS, pages 171-
177, 1976.

William E. Howden. Symbolic testlng and the DISSECT
symbolic evaluation system. |IEEE Transactions on Software
—ngineering, 3(4):266-2/8, 1977

Why didn't it take off"”

. Symbolic execution can be compute-intensive
. Lots of possible program paths

. Need to query solver a lot to decide which paths are
feasible, which assertions could be false

. Program state has many bits

. Computers were slow (not much processing power)
and small (not much memory)
. Recent Apple IPads are as fast as Cray-2’s from the 80's

lToaay

. Computers are much faster, bigger

- Better algorithms too: powerful SMT/SAT solvers
. SMT = Satisfiability Modulo Theories = SAT++

o Can solve very large instances, very quickly
. Lets us check assertions, prune infeasible paths

Rediscovery

e 2005-20006 reinterest in symbolic execution

o Area of success: (security) bug finding
. Heuristic search through space of possible executions
. Find really interesting bugs

Basic symbolic execution

Symbolic variables

e Extend the language’'s support for expressions e to
include symbolic variables, representing unknowns

ex=o|n|X|eo+ei|eoser|eo&&e1]...
« N €N = Integers, X € Var = variables, a € SymVar

e Symbolic variables are introduced when reading input
Using mmap, read, write, fgets, etc.
. S0 If a bug is found, we can recover an input that
reproduces the bug when the program is run normailly

Symbolic expressions

o \We make (or modity) a language interpreter to be
able to compute symbolically
. Normally, a program's variables contain values

. Now they can also contain symbolic expressions
- Which are expressions containing symbolic variables

e« Example normal values:
. 5, "hello”

e« Example symbolic expressions:
. a+b5, “hello”+a, ala+p+2]

Straight-line execution

/X = read();

Y = S5 + Xy

z =7 + vy;

afz] = 1;
Concrete Memory Symbolic Memory
X P O X b O
y = 10 y = 5+a
2 /17 z P 12+x
a+ {0,0,0,0} a+-» {0,0,0,0}
Overrun! Possible overrun!

We'll explain arrays shortly

Path conaition

« Program control can be affected by symbolic values

1 X = read();

> 1f (x>5) {

3 Yy = 6;

4 if (x<10)

5 y = 5;

¢ } else y = 0;

« We represent the influence of symbolic values on the
current path using a path condition o

. Line 3 reached when a>5
. Line 5 reached when a>5 and a<10
. Line 6 reached when a<h

Path feasibility

« \Whether a path is feasible is tantamount to a path
condition being satisfiable

X:

Y

SN O & W DN B

read();
1f (x>5) {

1f (x<3)

Y

} else yv = 0;

6;

mM=oa>d

W=a<o Not satisfiable!

- Solution to path constraints can be used as inputs
to a concrete test case that will execute that path

. SO
. SO

U
U

tion
tion

to reach
to reach

ne 3:a =0
ne oo =2

Patns ana assertions

o Assertions, like array bounds checks, are conditionals

1 X = read(); w=t€true

2y = 5 + x; m = true

32 =7 + y; m = true

s if(z < 0) m = true

5 abort (); m= |2+a<0

6 if(z >= 4); w=(l2+a<0)

7 abort(); m = (12+0<0) A [2+02%

g a[z] = 1; m = (12+0<0) A ~(12+a24%)

e SO, If either lines 5 or lines 7 are reachable (i.e., the
paths reaching them are feasible), we have found an
out-of-bounds access

-Oorking execution

o Symbolic executors can fork at branching points

. Happens when there are solutions to both the path
condition and its negation

« How to systematically explore both directions?

. Check feasibility during execution and queue feasible
path (condition)s for later consideration

. Concolic execution: run the program (concretely) to

coIr

patr

pletior

condait

th

10

en genera

e new Input by changing the

-xecution algorithm

1. Create Initial task
-pc=0,m=0,0=0

2. Add task (pc, m, o) onto worklist

co 1f (p) {
3. While (list is not empty) ’

pcl

3a. pull some task (pc, m, o) from worklist pc2 } else { ..

3b. execute. if it potentially forks at (pco, o, oo)
3ba. add task (pci, (mo A p), co) if mo A p feasible
3bb. add task (pcz, (mo A =p), oo) if Mo A —p feasible

Note: Libraries, native code

o At some point, symbolic execution will reach the
‘edges’” of the application
. Library, system, or assembly code calls

e |n some cases, could pull In that code also
. E.g., pull In libc and symbolically execute it

. But glibc is insanely complicated
- Symbolic execution can easily get stuck in it

. S0, pull in a simpler version of libc, e.g., newlib

e |n other cases, need to make models of code
. E.g., Implement ramdisk to model kernel fs code

Concolic execution

« Also called dynamic symbolic execution

Instrument the program to do symbolic execution

as the program runs

. Shadow concrete program state with symbolic variables
Initial concrete state determines Initial path

. could be randomly
Keep shadow path

generated
condition

Explore one path at a time, start to finish

. The next path can be determi

. negating some elemr

. Solving for it, to proc

ent of the last

uce concret

. Always have a concrete under

e

ned by

path condition, and

iInputs for the next test

ying value to rely on

Concretization

o Concolic execution makes it really easy to concretize

Replace symbolic variables with concrete values that

satisty the path condition
- Always have these around in concolic execution

e SO, could actually do system calls
But we lose symbolic-ness at such calls

« And can handle cases when conditions too complex
for SMT solver

Symbolic execution as search, and
the rise of solvers

Search and SMT

o Symbolic execution is appealingly simple and
useful, but computationally expensive

 We will see how the eftective use of symbolic
execution boils down to a kind of search

o And also take a moment to see how its feasibility at all
has been aided by the rise of SMT solvers

Path explosion

o Usually can’t run symbolic execution to exhaustion
Exponential In branching structure

1. Inta=q,b=p,c=Yy; // symbolic
2. if (a) ... else ...;
3. if (b) ... else ...;
4. if (c) ... else ...;

Ex: 3 variables, 8 program paths
Loops on symbolic variables even worse
1. Inta=aq; // symbolic

2. while (a) do ...;
3. ...

Potentially 2231 paths through loop!

Compared to static analysis

o Stepping back: Here is a benefit of static analysis

. Static analysis will actually terminate even when
considering all possible program runs

e |t does this by approximating multiple loop
executions, or branch conditions

. Essentially assumes all branches, and any number of
loop iterations, are feasible

« But can lead to false alarms, of course

Basic (symbolic) search

o Simplest ideas: algorithms 101
. Depth-first search (DFS) — worklist = stack
. Breadth-first search (BFS) — worklist = queue

e Potential drawbacks

. Not guided by any higher-level knowledge
- Probably a bad sign

. DFS could easily get stuck in one part of the program

- E.Q.

, It could keep going around a loop over and over again

. Of these two, BFS Is a better choice

Bu

t more intrusive to implement (can’t easily be concolic)

Search strategies

 Need to prioritize search

. [ry to steer search towards paths more likely to contain
assertion failures

. Only run for a certain length of time
- So if we don't find a bug/vulnerability within time budget, too bad

e Think of program execution as a DAG
. Nodes = program states
. Edge(ni,n2) = can transition from state n1 to state n2

 \We need a kind of graph exploration algorithm
. At each step, pick among all possible paths

Ranadomness

 \We don't know a priori which paths to take, so adding
some randomness seems like a good idea

|dea 1: pick next path to explore uniformly at random
(Random Path, or RP)

|[dea 2: randomly restart search if haven't hit anything
interesting in a while

|dea 3: choose among equal priority paths at random
- All of these are good ideas, and randomness is very effective

« One drawback of randomness: reproducibility

. Probably good to use pseudo-randomness based on
seed, and then record which seed Is picked
Or bugs may disappear (or reappear) on later runs

Coverage-guided heuristics

. |ldea: Try to visit statements we haven’t seen before

e Approach
. Score of stat

ement = # times It's been seen

. Pick next statement to explore that has lowest score

. Why might thi

S wWork”

. Errors are of

en In hard-to-reach parts of the program

. Ihis strategy tries to reach everywhere.

. Why might th

IS hot work”?

. Maybe never be able to get to a statement if proper

precondition

NOt set up

(Generational search

 Hybrid of BFS and coverage-guided

Generation 0. pick one program at random, run to

completion
Generation 1: take paths from gen 0; negate or

condition on a path to yield a new path prefix; fi
solution for that pretix; then take the resulting path

e branch

[

d a

- Semi-randomly assigns to any variables not constrained by the prefix

Generation n: similar, but branching off gen n-T1

o AlSO uses a coverage heuristic to pick priority

Combined search

« Run multiple searches at the same time
. Alternate between them; e.qg., Fitnext

e |dea: no one-size-fits-all solution
. Depends on conditions needed to exhibit bug

. S0 will be as good as “best” solution, within a constant
factor for wasting time with other algorithms

. Could potentially use different algorithms to reach
different parts of the program

SMT solver performance

e SAT solvers are at core of SMT solvers

In theory, could reduce all SMT queries to SAT queries
In practice, SMT-level optimizations are critical

e« SOMe example extensions/improvements
. Simple identities (x + 0 = x, x * 0 = 0)
. Theory of arrays (read(x, write(42, x, A)) = 42)
- 42 = array index, A = array, x = element
Caching (memoize solver gueries)

Remove useless variables

E.Q., If trying to show path feasible, only the part of the path condition
related to variables in guard are important

Popular SMT solvers

. Z3 - developed at Microsoft Research
. http://z3.codeplex.com/

- Yices - developed at SR
. http:/lyices.csl.sri.com/

. STP - developed by Vijay Ganesh, now @ Waterloo
. https://sites.google.com/site/stpfastprover/

.- CVC3 - developed primarily at NYU
. http://www.cs.nyu.edu/acsys/cvc3/

http://www.cs.nyu.edu/acsys/cvc3/

But; Path-based search limitea

int counter = 0, values = 0;
for (1 = 0; 1<100; 1++) {
1f (i1nput[i1] == ‘B’') {
counter++;
values += 2;
}
}
assert(counter != 75);

e This program has 2'%° possible execution paths.

e Hard to find the bug:

. ("W 75) = 278 paths reach buggy line of code
. Pr(finding bug) = 278 | 2100 = 2-22

Symbolic execution systems

Resurgence

o [woO key systems that triggered revival of this topic:

. DART — Godefroid and Sen, PLDI 2005

. Godefroid = model checking, formal systems
background

. EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler,
CCS 2006

. Ganesh and Dill = SMT solver called STP (used in
implementation), Cadar and Engler = systems

« Now on to next-generation systems

SAGE

. Concolic executor developed at Microsoft Research
. Grew out of Godefroid’s work on DART
. Uses generational search

« Primarily targets bugs in file parsers
. E.g., JPEG, DOCX, PPT, etc

. Good fit for concolic execution

- Likely to terminate
- Just input/output behavior

SAGE Impact

Used on production software at MS. Since 2007:

. 500+ machine years (in largest fuzzing lab in the world)
Large cluster of machines continually running SAGE

. 3.4 Billion+ constraints (largest SMT solver usage ever!)
100s of apps, 100s of bugs (missed by everything else...)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE

Bug fixes shipped quietly to 1 Billion+ PCs

Millions of dollars saved (for Microsoft and the world)

. SAGE Is now used daily in Windows, Office, etc.

http://research.microsoft.com/en-us/um/people/pg/public psfiles/SAGE-in-1slide-tor-PL DI2013.pdf

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/SAGE-in-1slide-for-PLDI2013.pdf

KLEE

- Symbolically executes LLVM bitcode

. LLVM compiles source file to .bc file
. KLEE runs the .bc file
. Grew out of work on EXE

o \Works in the style of our basic symbolic executor
. Uses fork () to manage multiple states

. Employs a variety of search strategies
Primarily random path + coverage-guided
. Mocks up the environment to deal with system calls, file
accesses, etc.

Freely available with LLVM distribution

KLEE: Coverage for Coreutils

100% .
§ : | |
S 50% ol
- ! |
S - {
= - i
2 i
m _50% B i T
= .

2 .
N
—100% g 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lngn)
from KLEE tests (Lg;ce) and dividing by the total possible:
(Lkice — Lman)/Ltotai. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008

KLEE: Coreutils crashes

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f 30 1

tl.txt: "\t \tMD5("

2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"

t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008

Viayhem

 Developed at CMU (Brumley et al), runs on binaries

o Uses BFS-style search and native execution
. Combines best of symbolic and concolic strategies

- Automatically generates exploits when bugs found

Mergepoint

e Extends Mayhem with a technique called veritesting
Combines symbolic execution with static analysis
. Use static analysis for complete code blocks

. Use symbolic execution for hard-to-analyze parts

- Loops (how many times will it run”), complex pointer arithmetic,
system calls

o Better balance of time between solver and executor
. Finds bugs faster
. Covers more of the program in the same time

« Found 11,687 bugs in 4,379 distinct applications in a
Linux distribution
Including new bugs in highly tested code

Other symbolic executors

- Cloud9 — Parallel, multi-threaded symbolic execution
. Extends KLEE (available)

- JCUTE, Java PathFinder — symbolic execution for
Java (available)

- Bitblaze — Binary analysis framework (available)

- Otter — directed symbolic execution for C (available)

. Give the tool a line number, and it try to generate a test
case to get there

- Pex — symbolic execution for .NET

summary

- Symbolic execution generalizes testing

. Uses static analysis to direct generation of tests that
cover different program paths

e Used in practice to find security-critical bugs in
production code
. SAGE at Microsoft

. Mergepoint for Linux

- Many tools freely available

