
Static AnalysisStatic Analysis

Slide deck courtesy of Prof. Michael Hicks,
University of Maryland, College Park (UMD)

Static Analysis
• Introduction

• Static analysis: What, and why?

• Basic analysis
• Example: Flow analysis

• Increasing precision
• Context-, flow-, and path sensitivity

• Scaling it up
• Pointers, arrays, information flow, …

for Secure Development

Non Examinable
(Scaling it up)

Current Practice
• Testing

– Make sure program runs correctly on set of inputs

inputs outputs

program

Is it correct?

oracle

register char *q;
char inp[MAXLINE];
char cmdbuf[MAXLINE];
extern ENVELOPE BlankEnvelope;
extern void help __P((char *));
extern void settime __P((ENVELOPE *));
extern bool enoughdiskspace __P((long));
extern int runinchild __P((char *, ENVELOPE *));

.

.

.

for Software Assurance

– Benefits: Concrete failure proves issue, aids in fix
– Drawbacks: Expensive, difficult, hard to cover all

code paths, no guarantees

Current Practice
• Code Auditing

– Convince someone else your source code is correct
– Benefit: humans can generalize beyond single runs
– Drawbacks: Expensive, hard, no guarantees

???
register char *q;
char inp[MAXLINE];
char cmdbuf[MAXLINE];
extern ENVELOPE BlankEnvelope;
extern void help __P((char *));
extern void settime __P((ENVELOPE *));
extern bool enoughdiskspace __P((long));
extern int runinchild __P((char *, ENVELOPE *));
extern void checksmtpattack __P((volatile int *, int, char *, ENVELOPE *));

if (fileno(OutChannel) != fileno(stdout))
{
/* arrange for debugging output to go to remote host */
(void) dup2(fileno(OutChannel), fileno(stdout));

}
settime(e);
peerhostname = RealHostName;
if (peerhostname == NULL)
peerhostname = "localhost";

CurHostName = peerhostname;
CurSmtpClient = macvalue('_', e);
if (CurSmtpClient == NULL)
CurSmtpClient = CurHostName;

setproctitle("server %s startup", CurSmtpClient);
#if DAEMON
if (LogLevel > 11)
{
/* log connection information */
sm_syslog(LOG_INFO, NOQID,
"SMTP connect from %.100s (%.100s)",
CurSmtpClient, anynet_ntoa(&RealHostAddr));

}
#endif

/* output the first line, inserting "ESMTP" as second word */
expand(SmtpGreeting, inp, sizeof inp, e);
p = strchr(inp, '\n');
if (p != NULL)
*p++ = '\0';

id = strchr(inp, ' ');
if (id == NULL)
id = &inp[strlen(inp)];

cmd = p == NULL ? "220 %.*s ESMTP%s" : "220-%.*s ESMTP%s";
message(cmd, id - inp, inp, id);

/* output remaining lines */
while ((id = p) != NULL && (p = strchr(id, '\n')) != NULL)
{
*p++ = '\0';
if (isascii(*id) && isspace(*id))

cmd < &cmdbuf[sizeof cmdbuf - 2])
*cmd++ = *p++;

*cmd = '\0';

/* throw away leading whitespace */
while (isascii(*p) && isspace(*p))
p++;

/* decode command */
for (c = CmdTab; c->cmdname != NULL; c++)
{
if (!strcasecmp(c->cmdname, cmdbuf))
break;

}

/* reset errors */
errno = 0;

/*
** Process command.
**
** If we are running as a null server, return 550
** to everything.
*/

if (nullserver)
{
switch (c->cmdcode)
{
case CMDQUIT:
case CMDHELO:
case CMDEHLO:
case CMDNOOP:
/* process normally */
break;

default:
if (++badcommands > MAXBADCOMMANDS)
sleep(1);

usrerr("550 Access denied");
continue;

}
}

/* non-null server */
switch (c->cmdcode)
{
case CMDMAIL:
case CMDEXPN:
case CMDVRFY:

while (isascii(*p) && isspace(*p))
p++;

if (*p == '\0')
break;

kp = p;

/* skip to the value portion */
while ((isascii(*p) && isalnum(*p)) || *p == '-')
p++;

if (*p == '=')
{
*p++ = '\0';
vp = p;

/* skip to the end of the value */
while (*p != '\0' && *p != ' ' &&

!(isascii(*p) && iscntrl(*p)) &&
*p != '=')

p++;
}

if (*p != '\0')
*p++ = '\0';

if (tTd(19, 1))
printf("RCPT: got arg %s=\"%s\"\n", kp,
vp == NULL ? "<null>" : vp);

rcpt_esmtp_args(a, kp, vp, e);
if (Errors > 0)
break;

}
if (Errors > 0)
break;

/* save in recipient list after ESMTP mods */
a = recipient(a, &e->e_sendqueue, 0, e);
if (Errors > 0)
break;

/* no errors during parsing, but might be a duplicate */
e->e_to = a->q_paddr;
if (!bitset(QBADADDR, a->q_flags))
{
message("250 Recipient ok%s",
bitset(QQUEUEUP, a->q_flags) ?
" (will queue)" : "");

nrcpts++;
}
else
{
/* punt -- should keep message in ADDRESS.... */

(cont’d)

If You’re Worried about
Security…

A malicious adversary is trying to exploit anything
you miss!

What more can we do?

Static analysis
• Analyze program’s code without running it

• In a sense, we are asking a computer to do what a
human might do during a code review

• Benefit is (much) higher coverage
– Reason about many possible runs of the program

– Sometimes all of them, providing a guarantee
– Reason about incomplete programs (e.g., libraries)

• Drawbacks
• Can only analyze limited properties
• May miss some errors, or have false alarms
• Can be time consuming to run

Impact
• Thoroughly check limited but useful properties

– Eliminate categories of errors
– Developers can concentrate on deeper reasoning

• Encourages better development practices
– Develop programming models that avoid mistakes

in the first place
– Encourage programmers to think about and make

manifest their assumptions
– Using annotations that improve tool precision

• Seeing increased commercial adoption

What is
Static

Analysis?

The Halting Problem
• Can we write an analyzer that can prove, for any

program P and inputs to it, P will terminate
• Doing so is called the halting problem

program P

Always terminates?

analyzer

register char *q;
char inp[MAXLINE];
char cmdbuf[MAXLINE];
extern ENVELOPE BlankEnvelope;
extern void help __P((char *));
extern void settime __P((ENVELOPE *));
extern bool enoughdiskspace __P((long));
extern int runinchild __P((char *, ENVELOPE *));

.

.

.

Some material inspired by work of Matt Might: http://matt.might.net/articles/intro-static-analysis/

• Unfortunately, the halting problem is undecidable
• That is, it is impossible to write such an analyzer: it

will fail to produce an answer for at least some
programs (and/or some inputs)

http://matt.might.net/articles/intro-static-analysis/

Other properties?
• Perhaps security-related properties are feasible

• E.g., that all accesses a[i] are in bounds

• But these properties can be converted into the
halting problem by transforming the program

• I.e., a perfect array bounds checker could solve the
halting problem, which is impossible!

• Other undecidable properties (Rice’s theorem)
– Does this SQL string come from a tainted source?
– Is this pointer used after its memory is freed?
– Do any variables experience data races?

Halting ≈ Index in Bounds
• Proof by transformation

• Change indexing expressions a[i] to exit
- (i >= 0 && i < a.length) ? a[i] : exit()
- Now all array bounds errors instead result in termination

• Change program exit points to out-of-bounds accesses
- a[a.length+10]

• Now if the array bounds checker
• … finds an error, then the original program halts
• … claims there are no such errors, then the original

program does not halt
• … contradiction!

- with undecidability of the halting problem

Static analysis is impossible?
• Perfect static analysis is not possible

• Useful static analysis is perfectly possible, despite
1. Nontermination - analyzer never terminates, or
2. False alarms - claimed errors are not really errors, or
3. Missed errors - no error reports ≠ error free

• Nonterminating analyses are confusing, so tools tend
to exhibit only false alarms and/or missed errors

• Fall somewhere between soundness and
completeness

Things I say

Soundness Completeness

Things I say True things

True things

Trivially Sound: Say nothing Trivially Complete: Say everything

If analysis says that X is
true, then X is true.

If X is true, then analysis
says X is true.

Sound and Complete:
Say exactly the set of true things

Things I say
are all

True things

Stepping back
• Soundness: if the program is claimed to be error

free, then it really is
• Alarms do not imply erroneousness

• Completeness: if the program is claimed to be
erroneous, then it really is
• Silence does not imply error freedom

• Essentially, most interesting analyses
• are neither sound nor complete (and not both)
• … usually lean toward soundness (“soundy”) or

completeness

The Art of Static Analysis
• Analysis design tradeoffs
• Precision: Carefully model program behavior, to

minimize false alarms
• Scalability: Successfully analyze large programs
• Understandability: Error reports should be actionable

• Observation: Code style is important
• Aim to be precise for “good” programs

• It’s OK to forbid yucky code in the name of safety
• False alarms viewed positively: reduces complexity

• Code that is more understandable to the analysis is more
understandable to humans

Flow AnalysisFlow Analysis

Tainted Flow Analysis
• The root cause of many attacks is trusting

unvalidated input
• Input from the user is tainted
• Various data is used, assuming it is untainted

• Examples expecting untainted data
• source string of strcpy (≤ target buffer size)
• format string of printf (contains no format specifiers)
• form field used in constructed SQL query (contains no

SQL commands)

Recall: Format String Attack
• Adversary-controlled format string

• Attacker sets name = “%s%s%s” to crash program
• Attacker sets name = “…%n…” to write to memory

- Yields code injection exploits

• These bugs still occur in the wild
• Too restrictive to forbid non-constant format strings

char *name = fgets(…, network_fd);
printf(name); // Oops

The problem, in types
• Specify our requirement as a type qualifier

• tainted = possibly controlled by adversary
• untainted = must not be controlled by adversary

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted char *name = fgets(…,network_fd);
printf(name); // FAIL: tainted ≠ untainted

Analysis problem
• No tainted data flows: For all possible inputs, prove

that tainted data will never be used where untainted
data is expected
• untainted annotation: indicates a trusted sink
• tainted annotation: an untrusted source
• no annotation means: not sure (analysis figures it out)

• A solution requires inferring flows in the program
• What sources can reach what sinks
• If any flows are illegal, i.e., whether a tainted source may

flow to an untainted sink

• We will aim to develop a sound analysis

Legal Flow
void f(tainted int);
untainted int a = …;
f(a);

f accepts tainted or
untainted data

g accepts only untainted
datauntainted ≤ tainted

void g(untainted int);
tainted int b = …;
g(b);

Allowed flow as a
lattice

tainted ≤ untainted

tainteduntainted <

Illegal Flow

Analysis Approach
• Think of flow analysis as a kind of type inference

• If no qualifier is present, we must infer it

• Steps:
• Create a name for each missing qualifier (e.g., α, β)
• For each statement in the program, generate

constraints (of the form q1 ≤ q2) on possible solutions
- Statement x = y generates constraint qy ≤ qx where qy is y’s qualifier

and qx is x’s qualifier
• Solve the constraints to produce solutions for α, β, etc.

- A solution is a substitution of qualifiers (like tainted or untainted) for
names (like α and β) such that all of the constraints are legal flows

• If there is no solution, we (may) have an illegal flow

printf(x);

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted ≤ α

α ≤ β

β ≤ untainted

α
β
char *name = fgets(…, network_fd);
char *x = name;

Illegal flow!
No possible solution for

α and β

Example Analysis

First constraint requires α = tainted
To satisfy the second constraint implies β = tainted
But then the third constraint is illegal: tainted ≤ untainted

Flow Analysis:
Adding

Sensitivity

Conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

char *name = fgets(…, network_fd);
char *x;

if (…) x = name;
else x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

Constraints still unsolvable
Illegal flow

Dropping the
Conditional

int printf(untainted char *fmt, …);
tainted char *fgets(…);

char *name = fgets(…, network_fd);
char *x;

x = name;
x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

Same constraints,
different semantics!

False Alarm

Flow Sensitivity
• Our analysis is flow insensitive

• Each variable has one qualifier which abstracts the
taintedness of all values it ever contains

• A flow sensitive analysis would account for
variables whose contents change

• Allow each assigned use of a variable to have a
different qualifier

- E.g., α1 is x’s qualifier at line 1, but α2 is the qualifier at line 2, where
α1 and α2 can differ

• Could implement this by transforming the program to
assign to a variable at most once

- Called static single assignment (SSA) form

Reworked Example
int printf(untainted char *fmt, …);
tainted char *fgets(…);

char *name = fgets(…, network_fd);
char *x1, *x2;

x1 = name;
x2 = “%s”;
printf(x2);

α
β

tainted ≤ α
α ≤ β

γ ≤ untainted
untainted ≤ γ

→

No Alarm
Good solution exists:
γ = untainted
α = β = tainted

γ

Multiple Conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

void f(int x) {
char *y;

if (x) y = “hello!”;
else y = fgets(…, network_fd);
if (x) printf(y);

}

α

tainted ≤ α

α ≤ untainted

untainted ≤ α

→

no solution for α

X

False Alarm!
(and flow sensitivity won’t help)

Path Sensitivity
• An analysis may consider path feasibility. E.g., f(x)

can execute path void f(int x) {
char *y;
1if (x) 2y = “hello!”;
else 3y = fgets(…);
4if (x) 5printf(y);

6}

• 1-2-4-5-6 when x is not 0, or
• 1-3-4-6 when x is 0. But,
• path 1-3-4-5-6 infeasible

• A path sensitive analysis checks feasibility, e.g.,
by qualifying each constraint with a path condition
• x ≠ 0⟹ untainted ≤ α (segment 1-2)
• x = 0⟹ tainted ≤ α (segment 1-3)
• x ≠ 0⟹ α ≤ untainted (segment 4-5)

Why not flow/path sensitivity?
• Flow sensitivity adds precision, and path sensitivity

adds even more, which is good

• But both of these make solving more difficult
• Flow sensitivity also increases the number of nodes in

the constraint graph
• Path sensitivity requires more general solving

procedures to handle path conditions

• In short: precision (often) trades off scalability
• Ultimately, limits the size of programs we can analyze

Handling Function Calls
char *id(char *x) {
return x;

}

α char *a = fgets(…);
β char *b = id(a);

γδ

•

• Calls create flows
• from caller’s data to callee’s arguments,
• from callee’s result to caller’s returned value

• Names for arguments and return value

Handling Function Calls
δ char *id(γ char *x) {

return x;
}

α char *a = fgets(…);
β char *b = id(a);

tainted ≤ α
α ≤ γ

δ ≤ β
γ ≤ δ

Function Call Example
δ char *id(γ char *x) {

return x;
}

α char *a = fgets(…);
β char *b = id(a);
ω char *c = “hi”;
printf(c);

→

ω ≤ untainted
untainted ≤ ω

tainted ≤ α
α ≤ γ

δ ≤ β
γ ≤ δ

No Alarm
Good solution exists:

ω = untainted
α = β = γ = δ = tainted

Two Calls to Same
Function

δ char *id(γ char *x) {
return x;

}

α char *a = fgets(…);
β char *b = id(a);
ω char *c = id(“hi”);
printf(c);

→

ω ≤ untainted

untainted ≤ γ

tainted ≤ α
α ≤ γ

δ ≤ β
γ ≤ δ False Alarm!

No solution, and yet
no true tainted flow

δ ≤ ω

Two Calls to Same
Function

δ char *id(γ char *x) {
return x;

}

α char *a = fgets(…);
β char *b = id(a);
ω char *c = id(“hi”);
printf(c);

tainted ≤ α ≤ γ ≤ δ ≤ ω ≤ untainted

False Alarm!
No solution, and yet
no true tainted flow

Problematic constraints represent
an infeasible path

Context (In)sensitivity
• This is a problem of context insensitivity

• All call sites are “conflated” in the graph

• Context sensitivity solves this problem by
• distinguishing call sites in some way

- We can give them a label i, e.g., the line number in the program
• matching up calls with the corresponding returns

- Label call and return edges
- Allow flows if the labels and polarities match
- Use index -i for argument passing, i.e., q1 ≤-i q2
- Use index +i for returned values, i.e., q1 ≤+i q2

Two Calls to Same
Function

δ char *id(γ char *x) {
return x;

}

α char *a = fgets(…);
β char *b = id1(a);
ω char *c = id2(“hi”);
printf(c);

ω ≤ untainted

untainted ≤-2 γ

tainted ≤ α
α ≤-1 γ

δ ≤+1 β
γ ≤ δ

δ ≤+2 ω

Indexes don’t match up
Infeasible flow not allowed

No Alarm

Discussion
• Context sensitivity is a tradeoff again

• Precision vs. scalability
- O(n) insensitive algorithm becomes O(n3) sensitive algorithm

• But: sometimes higher precision improves performance
- Eliminates infeasible paths from consideration (makes n smaller)

• Compromises possible
• Only some call sites treated sensitively

- Rest conflated
• Conflate groups of call sites

- Give them the same index
• Sensitivity only up to a certain call depth

- Don’t do exact matching of edges beyond that depth

Flow Analysis:
Scaling it up
to a complete
language and
problem set

Non Examinable

Pointers

α ≤ β
β ≤ γ

tainted ≤ ω
ω ≤ γ

→

untainted ≤ α

β ≤ untainted

Solution exists:
α = β = untainted
ω = γ = tainted

Misses illegal flow!
• p and q are aliases

-so writing tainted data to q
-makes p’s contents tainted

α char *a = “hi”;
(β char *)*p = &a;
(γ char *)*q = p;
ω char *b = fgets(…);
*q = b;
printf(*p);

Non Examinable

Pointers

α ≤ β
β ≤ γ

tainted ≤ ω
ω ≤ γ

untainted ≤ α

β ≤ untainted

Solution exists:
α = β = untainted
ω = γ = tainted

γ ≤ β

α char *a = “hi”;
(β char *)*p = &a;
(γ char *)*q = p;
ω char *b = fgets(…);
*q = b;
printf(*p);

Non Examinable

Pointers
α char *a = “hi”;
(β char *)*p = &a;
(γ char *)*q = p;
ω char *b = fgets(…);
*q = b;
printf(*p);

α ≤ β
β ≤ γ

tainted ≤ ω
ω ≤ γ

untainted ≤ α

β ≤ untainted

Solution exists:
α = β = untainted
ω = γ = tainted

γ ≤ β

Non Examinable

Flow and pointers
• An assignment via a pointer “flows both ways”

• Ensures that aliasing constraints are sound
• But can lead to false alarms

• Reducing alarms
• If pointers are never assigned to (const) then

backward flow is not needed (sound)
• Drop backward flow edge anyway

- Trades false alarms for missed errors (unsoundness)

Non Examinable

Implicit flows

void copy(tainted char *src,
untainted char *dst,
int len) {

untainted int i;
for (i = 0; i<len; i++) {

dst[i] = src[i]; //illegal
}

}

tainted ≤ untainted

untainted char tainted char
dst[i] src[i]

Illegal flow :

Non Examinable

Implicit flows

untainted charuntainted char

void copy(tainted char *src,
untainted char *dst,
int len) {

untainted int i, j;
for (i = 0; i<len; i++) {

for (j = 0; j<sizeof(char)*256; j++) {
if (src[i] == (char)j)

dst[i] = (char)j; //legal?
}

}
}

Missed flow

Non Examinable

Information flow analysis
• The prior flow is an implicit flow, since information

in one value implicitly influences another

• One way to discover these is to maintain a scoped
program counter (pc) label

• Represents the maximum taint affecting the current pc

• Assignments generate constraints involving the pc
• x = y produces two constraints:
label(y) ≤ label(x) (as usual)

pc ≤ label(x)

• Generalized analysis tracks information flow

Non Examinable

pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

Info flow example
tainted int src;
α int dst;
if (src == 0)
dst = 0;

else
dst = 1;

dst += 0; untainted ≤ α

pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

untainted ≤ α

untainted ≤ α
α ≤ pc2

α ≤ pc3

α ≤ pc4

Solution requires α = tainted
Discovers implicit flow

Non Examinable

Why not information flow?
• Tracking implicit flows with a pc label can lead to

false alarms
• E.g., ignores values

• Extra constraints also hurt performance

• Our copying example is pathological
• We typically don’t write programs like this
• Implicit flows will have little overall influence

• So: tainting analyses tend to ignore implicit flows

tainted int src;
α int dst;
if (src > 0) dst = 0;
else dst = 0;

Non Examinable

Other challenges
• Taint through operations

• tainted a; untainted b; c=a+b — is c tainted? (yes, probably)

• Function pointers
• What function can this call go to?
• Can flow analysis to compute possible targets

• Struct fields
• Track the taintedness of the whole struct, or each field?
• Taintedness for each struct instance, or shared among all of them (or

something in between)?
- Note: objects ≈ structs + function pointers

• Arrays
• Keep track of taintedness of each array element, or one element

representing the whole array?

Non Examinable

Refining taint analysis
• Can label additional sources and sinks

• Array bounds accesses: must have untainted index

• Can expand taint analysis to handle sanitizers
• Functions to convert tainted data to untainted data

• Other application: Leaking confidential data
• Don’t want secret sources to go to public sinks

- Implicit flows more relevant in this setting
• Dual of tainting

Non Examinable

Other kinds of analysis
• Pointer Analysis (“points-to” analysis)

• Determine whether pointers point to the same locations
• Shares many elements of flow analysis. Really

advanced in the last 10 years.

• Data Flow Analysis
• Invented in the early 1970’s. Flow sensitive, tracks

“data flow facts” about variables in the program

• Abstract interpretation
• Invented in the late 1970’s as a theoretical foundation

for data flow analysis, and static analysis generally.
• Associated with certain analysis algorithms

Non Examinable

Commercial products

Open source tools

Static analysis in practice

Fortify

Caveat: appearance in the above list is not an implicit endorsement, and these are only a sample of available offerings

FindBugs
clang
analyzer

&
KLEE

Non Examinable

Learning more
• Secure Programming with Static

Analysis, by Brian Chess, goes into
more depth about how static analysis
tools work, and can aid secure software
development

• Principles of Program Analysis, by
Nielson, Nielson, and Hankin, is a
formal, mathematical presentation of
different analysis methods

• A bit dense for the casual reader, but
good for introducing the academic field

