\
A
s R,

’

s

Non Examinable

(Scaling it up)

Static Analysis

for Secure Development

- Introduction

Static analysis: What, and why"

- Basic analysis

Example: Flow analysis

- Increasing precision

Context-, flow-, and path sensitivity

- Scaling it up
. Pointers, arrays, information flow, ...

Current Practice

for Software Assurance

- Testing
- Make sure program runs correctly on set of inputs

register char *q; / \
char inp[MAXLINE];
extern ENVELOPE BlankEnvelope;
® extern void help P((char *)); o ‘)
Inputs outputs S 1t correct
extern bool enoughdiskspace P((long [
extern int runinchild _ P((char *, ENVELOPE *)); ,

program oracle

- Benefits: Concrete failure proves issue, aids in fix

- Drawbacks: Expensive, difficult, hard to cover all
code paths, no guarantees

urrent Practice

Convince someone else your source code is correct
Benefit: humans can generalize beyond single runs
D

cont’d

rawbacks: Expensive, hard, no guarantees

277

register char *q;

char inp[MAXLINE];

char cmdbuff MAXLINE];

extern ENVELOPE BlankEnvelope;

extern void help P((char *));

extern void settime _ P((ENVELOPE *));

extern bool enoughdiskspace _ P((long));

extern int runinchild __ P((char *, ENVELOPE *));

extern void checksmtpattack _ P((volatile int *, int, char *, ENVELOPE *));

if (fileno(OutChannel) != fileno(stdout))

{
/* arrange for debugging output to go to remote host */
(void) dup2(fileno(OutChannel), fileno(stdout));

}

settime(e);

peerhostname = RealHostName;

if (peerhostname == NULL)
peerhostname = "localhost";

CurHostName = peerhostname;

CurSmtpClient = macvalue(' ', e);

if (CurSmtpClient == NULL)
CurSmtpClient = CurHostName;

setproctitle("server %s startup”, CurSmtpClient);
#if DAEMON

if (LogLevel > 11)

{

/* log connection information */
sm_syslog(LOG_INFO, NOQID,
"SMTP connect from %.100s (%.100s)",
CurSmtpClient, anynet ntoa(&RealHostAddr));
}
#endif

/* output the first line, inserting "ESMTP" as second word */
expand(SmtpGreeting, inp, sizeof inp, e);
p = strchr(inp, "\n');
if (p '=NULL)
=104
id = strchr(inp, '');
if id==NULL)
id = &inp[strlen(inp)];
cmd = p == NULL ? "220 %.*s ESMTP%s" : "220-%.*s ESMTP%s";
message(cmd, id - inp, inp, id);

/* output remaining lines */
while ((id = p) != NULL && (p = strchr(id, "n")) != NULL)
{

*ptt =107

if (isascii(*id) && isspace(*id))

cmd < &cmdbuf]sizeof cmdbuf - 2])
*emd++ = *pt++;
*cmd ="\0";

/* throw away leading whitespace */
while (isascii(*p) && isspace(*p))
p;

/* decode command */
for (c = CmdTab; c->cmdname != NULL; c++)
(
1
if (!strcasecmp(c->cmdname, cmdbuf))
break;

}

/* reset errors */
errno = 0;

/*
** Process command.
*kk

** If we are running as a null server, return 550
** to everything.
*/

if (nullserver)
(

1
switch (c->cmdcode)

{case CMDQUIT:
case CMDHELO:
case CMDEHLO:
case CMDNOOP:

/* process normally */
break;

default:

if (++badcommands > MAXBADCOMMANDS)

sleep(1);
usrerr("550 Access denied");

continue;
}

}

/* non-null server */
switch (c->cmdcode)
(
i
case CMDMAIL:
case CMDEXPN:
case CMDVRFY:

while (isascii(*p) && isspace(*p))

pt;
if (*p=="\0")
break;
kp=p;

/* skip to the value portion */
while ((isascii(*p) && isalnum(*p)) || *p =="-")
ptt;
if(p=")
*ptt =107
Vp=Pp;
/* skip to the end of the value */

while (*p 1="\0' && *p ="' &&
I(isascii(*p) && iscntrl(*p)) &&

*pl='=)
p;
}
if (*p 1="0")
*ptt =107

if (tTd(19, 1))
printf("RCPT: got arg %s=\"%s\"\n", kp,
vp ==NULL ? "<null>" : vp);

rept_esmtp_args(a, kp, vp, €);
if (Errors > 0)

break;

}

if (Errors > 0)
break;

/* save in recipient list after ESMTP mods */
a =recipient(a, &e->¢_sendqueue, 0, ¢);
if (Errors > 0)

break;

/* no errors during parsing, but might be a duplicate */

e->e to =a->q_paddr;
if ('bitset(QBADADDR, a->q_flags))

message("250 Recipient ok%s",
bitset(QQUEUEUP, a->q_flags) ?
" (will queue)" : "");
nrepts++;

}

else

/* punt -- should keep message in ADDRESS....

*/

T You're Worried about
Security. ..

A malicious adversary Is trying to exploit anything
you miss!

What more can we do?

Static analysis

- Analyze program’s code without running it

In a sense, we are asking a computer to do what a
human might do during a code review

Benefit is (much) higher coverage
- Reason about many possible runs of the program
- Sometimes all of them, providing a guarantee
- Reason about incomplete programs (e.q., libraries)

Drawbacks

. Can only analyze limited properties

. May miss some errors, or have talse alarms
. Can be time consuming to run

mpact

o [horoughly check limited but useful properties
- Eliminate categories of errors
- Developers can concentrate on deeper reasoning

Encourages better development practices

- Develop programming models that avoid mistakes
N the first place

- Encourage programmers to think about and make
manifest their assumptions
- Using annotations that improve tool precision

e Seeing increased commercial adoption

wWhat Is
Static

The Halting Problem

o Can we write an analyzer that can prove, for any

program P and inputs to it, P will terminate

. Doing so is called the halting problem

program P analyzer

o Unfortunately, the halting problem is undecidable

1r
Wi

5
1]

1S, 1t IS Impossible to write such an analyzer: it

fail to produce an answer for at least some

programs (and/or some inputs)

Some material inspired by work of Matt Might: htip.//matt.might.net/articles/intro-static-analysis/

http://matt.might.net/articles/intro-static-analysis/

Other properties?

o Perhaps security-related properties are feasible
. E.Q., that all accesses a[i] are In bounds

. Butthese properties can be converted into the
halting problem by transtorming the program

. |.e., a perfect array bounds checker could solve the
halting problem, which is impossible!

o Other undecidable properties (Rice’'s theorem)
- Does this SQL string come from a tainted source?
- Is this pointer used after its memory is freed?’
- Do any variables experience data races”

Halting = Index In Bounds

« Proof by transformation

. Change indexing expressions a[i] to exit
- (1> 0 && 1 < a.length) ? a[1] : exit()
Now all array bounds errors instead result in termination

. Change program exit points to out-of-bounds accesses
- ala.length+10]

« Now If the array bounds checker
. ... finds an error, then the original program halts

. ... Cclaims there are no such errors, then the original
program does not halt

. ... contradiction!
with undecidability of the halting problem

Static analysis is impossible”

Perfect static analysis is not possible

Useful static analysis is perfectly possible, despite
1. Nontermination - analyzer never terminates, or

2. False alarms - claimed errors are not really errors, or
3. Missed errors - no error reports = error free

« Nonterminating analyses are confusing, so tools tend
to exhibit only tfalse alarms and/or missed errors

. Fall somewhere between soundness and
completeness

Soundness Completeness

If analysis says that X is It X Is true, then analysis
true, then X iIs true. says X Is true.

'ngs | say

are all
Things | s

Trivially Sound: Say Sondjand Complete€omplete: Say everything
Say exactly the set of true things

Stepping back

- Soundness: if the program is claimed to be error
free, then it really is

Alarms do not imply erroneousness

. Completeness: if the program is claimed to be
erroneous, then it really Is

Silence does not imply error freedom

e Essentially, most interesting analyses
. are neither sound nor complete (and not both)

... usually lean toward soundness (“soundy”) or
completeness

The Art of Static Analysis

o Analysis design tradeotffs

- Precision: Carefully model program behavior, to

minimize false alarms

- Scalability: Successfully analyze large programs
- Understandability: Error reports should be actionable

o Observation: Code style

IS Important

« Aim to be precise for “good” programs

e |t's OK to forbid yucky code in t
e [alse alarms viewed posit

« Code that is more understandable to the analysis is more

understandable to humans

ne name of safety

ively: reduces complexity

Flow Analysis

e

lTainted Flow Analysis

« [he root cause of many attacks is trusting
unvalidated input
Input from the user is tainted
. Various data Is used, assuming it is untainted

e« Examples expecting untainted data
. source string of strcpy (< target buffer size)
format string of printf (contains no format specitiers)

form field used in constructed SQL query (contains no
SQL commands)

Recall: Format String Attack

o Adversary-controlled format string

. A
. A

char *name = fgets(.., network fd);
printf(name); // Oops

tacker se

tacker se
Yields code

S name = “%$s%s%s” to crash program

'S name = “..%n...” to write to memory

Injection exploits

e [hese bugs still occur in the wild
. Too0 restrictive to forbid non-constant format strings

Ihe problem, In types

o Specify our requirement as a type qualifier

int printf(untainted char *fmt, ..);

tainted char *fgets(..);

tainted = possibly controlled by adversary
untainted = must not be controlled by adversary

tainted char *name = fgets(..,network fd);

printf(name); // FAIL: tainted # untainted

Analysis problem

- No tainted data flows: For all possible inputs, prove
that tainted data will never be used where untainted
data Is expected

untainted annotation: indicates a trusted sink
tainted annotation: an untrusted source
no annotation means: not sure (analysis figures it out)

o A solution requires inferring flows in the program
. \What sources can reach what sinks

it any flows are illegal, i.e., whether a tainted source may
flow to an untainted sink

« We will aim to develop a sound analysis

| egal rlow

vold f(tainted int);
untainted 1int a -
t(a);

llegal Flow

f accepts tainted or
untainted gatiinted

Allowed flow as a

vold g(untainted 1int);
tainted int b el

g(b);

g accepts only untainted
teivated £ untainted

untainted < tainted

|attice

Analysis

Approacn

« Think of flow analysis as a kind of type inference

. |f no qualifier is present,

¢ Steps:

we must Infer it

Create a name for each missing qualifier (e.q., a, B)

. For each statement Iin th

constraints (of the formr

Statement x = y generates
and gx is x's qualifier

e program, generate

g1 < gz) on possible solutions
constraint gy < gx where qy Is y's qualifier

Solve the constraints to produce solutions for a, B, etc.

A solution 1S a substitution of

qualifiers (like tainted or untainted) for

names (like a and B) such that all of the constraints are legal flows

« |f there is no solution, we (may) have an illegal flow

-xample Analysis

int printf(untainted char *fmt, ..);
tainted char *figets(..);

char *name fggts (.., network fd);
@har *X = name;

printf (x
tainted < a
Flrsé constla" al{ |e®W '
afi
B e, GO T e = umainte

aandB

-low Analysis:
Adding
Sensitivity

Conditionals

—| oo char *name = fgets (..., network_fd) ’
B char *x;
1f (..) X name;

else X “hello!"”;
printf(x);

tainted < a
a<fP

untainted < B

Constraints still unsolvable
lllegal flow

B < untainted

Dropping the
Conditional

B char *X s

X = name;

X = "hello!”;
printf(x);

tainted < «
a<p

untainted <

Same constraints,
different semantics!

B < untainted False Alarm

Flow Sensitivity

o Our analysis is flow insensitive

. Each variable has one qualifier which abstracts the
taintedness of all values it ever contains

» A flow sensitive analysis would account for
variables whose contents change

. Allow each assigned use of a variable to have a

different qualitier

E.g., ai is x's qualifier at line 1, but a2 is the qualifier at line 2, where
ar and a2 can differ

. Could implement this by transforming the program to

assign to a variable at most once
Called static single assignment (SSA) form

Reworked example

—>| o char *name = fgets(.., network fd);
B char *x1, vy *x2;
X1 = name:;
— II%S";
printf(x2);
tainted < a No Alarm
a<f (Good solution exists:
untainted <y v = untainted

v < untainted a = B = tainted

Multiple Conditionals

void f(int x)

o char *y;

1f (x) y = “hello!”;

else y = fgets(.., network fd);
1f (x) printf(y);

untainted < a .
NO solution for a

False Alarm!
(and flow sensitivity won't help)

tainted < a
a < untainted

Path Sensitivity

« An analysis may consider path feasibility. E.qQ., £ (x)
can execute path

void f(int x) {

char *y;
1-2-4-5-6 when xis not 0, or| 1 2y = “hello!”;
1-3-4-6 when x 1S 0. BUJ[, e y = fgets (...);
. path 1-3-4-5-6 infeasible printf(y);

« A path sensitive analysis checks feasibility, e.qg.,

by qualitying each constraint with a path condition
. x # 0 = untainted <a (segment |-2)
. x = 0= tainted < « (segment |-3)
. X # 0 = a<untainted (segment 4-5)

Why not tlow/path sensitivity”

e Flow sensitivity adds precision, and path sensitivity
adds even more, which is good

o But both of these make solving more difficult

. Flow sensitivity also increases the number of nodes in
the constraint graph

. Path sensitivity requires more general solving
procedures to handle path conditions

e |n short: precision (often) trades off scalability
. Ultimately, limits the size of programs we can analyze

Handling Function Calls

0 char *id(y char *x) {

return Xxj

}

o Names for arguments and return value

e Calls create flows

. from caller’s data to callee’s arguments,
. from callee’s result to caller’s returned value

Handling Function Calls

;'8 Char *Dd (Y charx) {
return X;

tainted < a
A<y

vy <6
6<P

Function Call Example

0 char *id(y char *x) {

—> | char *a fgets(..);

B char *b id(a); return Xx;

w char *c “hi"; }
printf(c);
tainted < a No Alarm
a<y (Good solution exists:
v <6 w = untainted
6<PB o =P =y =54 = tainted

untainted < w
w < untainted

Two Calls to Same
Function

o char *a fgets(..); 0 char *id(y char *x) {
B char *b id(a); return x;

—>|w char *c 1d(“hi"); }
printf(c);

tainted < «
o<y
V<6 False Alarm!
6<P No solution, and yet
untainted <y no true tainted flow
O < w

w < untainted

Two Calls to Same
FuNctio

x char *a *) ; S—Ehar *nd (Y char‘;x) {
B char *b j - return x)

printf (c‘s ;

tainted < a <y < 6 < w < untainted

False Alarm!
No solution, and yet

Problematic constraints represent

an infeasible path
Nno true tainted flow

Context (In)sensitivity

e [hisis a problem of context insensitivity
. All call sites are “conflated” in the graph

Context se

nsitivity solves this problem by

distinguishing call sites in some way
We can give them a label I, e.qg., the line number in the program

matching

Label call a
Allow flows

up calls with the corresponding returns
nd return edges

if the labels and polarities match

Jse index -i for argument passing, i.e., g1 <-I g2
Jse index +i for returned values, i.e., g1 <+i g2

Two Calls to Same

~unctio
@ char *av gets. HEE-ZZ;:—:~:;;\;;;; *X) {

B char *b = idai(a)
®w char *c =

return x;

printf(c‘;;
tainted < a
v<06& Indexes don’t match up
6 <+18 Infeasible flow not allowed
untainted <-2 y No Alarm

(2D

w < untainted

IScuUsSsIon

Context sensitivity is a tradeoff again

Precision vs. scalability
O(n) insensitive algorithm becomes O(n?) sensitive algorithm

. But: sometimes higher precision improves performance
Eliminates infeasible paths from consideration (makes n smaller)

o Compromises possible

. Only some call sites treated sensitively
Rest conflated

Conflate groups of call sites
Give them the same index

Sensitivity only up to a certain call depth
Don’t do exact matching of edges beyond that depth

Non Examinable

Flow Analysis:
to a complete

language and
prOblem get

7/ m

[

N

,\

Non Examinable

Polinters

—>|x char *a = “hi";
(B char *)*p = &a;
(Y char *)*q = p; o = B = untainted

w char *b = fgets(..); w =y = tainted

Solution exists:

untainted < a

Misses illegal flow!

a< .
B <y - p and g are aliases

tainted < w -s0 writing tainted date} to g
W <y -makes p's contents tainted

B < untainted

Non Examinable

Polinters

a char *a = “hi”;
(B char *)*p = &a;
(Y char *)*q = p;

w char *b = fgets(..);

untainted < a
a<f
<y

tainted < [
w<y

B < untainted

= 8 = untainted
w =y = tainted

Non Examinable

Polinters

a char *a = “hi”;
(B char *)*p = &a;
(Y char *)*q = p;

w char *b = fgets(..);

untainted < a
a<f
B<y
V <
tainted < w
w<y
B < untainted

= 8 = untainted
w =y = tainted

Non Examinable

-low and pointers

e An assignment via a pointer “flows both ways”

. Ensures that aliasing constraints are sound
. But can lead to false alarms

 Reducing alarms

If pointers are never assigned to (const) then
backward flow is not needed (sound)

. Drop backward flow edge anyway
- Trades false alarms for missed errors (unsoundness)

Non Examinable

Implicit flows

void copy(tainted char *src,
untalinted char *dst,
int len) {
untainted int 1i;
for (1 = 0; 1i<len; 1++) {
dst[i] = src[i]: //illegal
untainted char tainted char

}
lllegal flow :

tainted £ untainted

Non Examinable

Implicit flows

void copy(tainted char *src,
untainted char *dst,
int len) {
untainted int 1, 7J;
for (1 = 0; 1i<len; 1++) {
= 0; j<sizeof(char)*256;

for (3
if (src[i] == (char)j)
dst[i] = (char)j; //legal?
untainted char untainted char

}

Missed flow

| |
Information flow analysis

» [he prior flow is an implicit flow, since information
INn one value implicitly intfluences another

« One way to discover these is to maintain a scoped
program counter (pc) label

. Represents the maximum taint affecting the current pc

e Assignments generate constraints involving the pc
. X = y produces two constraints:
label(y) < label(x) (as usual)
pc < label(x)

- Generalized analysis tracks information flow

Non Examinable

Info flow example

tainted i1int src;

o 1nt dst;

pcr = untainted [1f (src == 0)
pce = tainted dst = 0; untainted < a
else o< pCz
pcs = tainted dst = 1; untainted < a
a < pC3
pc4 = untainted |[dst += 0; untainted < a
o < PC4

Solution requires a = tainted
Discovers implicit flow

| |
Why not information flow?

« [racking implicit flows with a pc label can lead to
false alarms tainted int src;
. E.g., Ignores values a int dst;

1f (src > 0) dst
else dst

« EXxtra constraints also hurt performance

« Our copying example is pathological
. We typically don't write programs like this
. Implicit flows will have little overall influence

. So: tainting analyses tend to ignore implicit flows

Non Examinable

Other challenges

- Taint through operations
. tainted a; untainted b; c=a+b — IS c tainted? (yes, probably)

Function pointers
. What function can this call go to”
. (Can flow analysis to compute possible targets

Struct fields
. Track the taintedness of the whole struct, or each field”?

. Taintedness for each struct instance, or shared among all of them (or

something in between)?
Note: objects = structs + function pointers

Arrays

. Keep track of taintedness of each array element, or one element
representing the whole array?

Non Examinable

Refining

taint analysis

o Can label additional sources and sinks
. Array bounds accesses: must have untainted index

o Can expand taint analysis to handle sanitizers

. Functions to conver

' tainted data to untainted data

o Other application: Leaking confidential data

Don’'t want secret sources to go to public sinks
- Implicit flows more relevant in this setting

Dual of tainting

Non Examinable

Other kinds of analysis

Pointer Analys
. Determine whe

Is (“points-to” analysis)

. Shares many e

ements of flow analysis. Rea

advanced in the last 10 years.

- Data Flow Analysis

Invented in the early 1970's. Flow sensitive, tracks
"data flow tfacts” about variables in the program

- Abstract interpretation

Invented in the late 1970’s as a theoretical foundation
for data flow analysis, and static analysis generally.

. Associated with certain analysis algorithms

her pointers point to the same locations

ly

Static analysis in practice

Commercial products

0 COVCI'itY” (:g:) GRAMMATECH @ Fortify

A Synopsys Company

& klocwork VERACODE

a Rogue Wave Company

Open source tools

"“' clan
& FindBugs s anal}c/]zer W» Joern

&
LLVM KLEE

Caveat: appearance in the above list is not an implicit endorsement, and these are only a sample of available offerings

|_earning more

Secure Programming with Static e
Analysis, by Brian Chess, goes into PSREG%ﬁl“j“I}NE
more depth about how static analysis STATIC ANALYSIS
tools work, and can aid secure software)

y

development

i,

- s
Brian Chess ‘ Jacob West

Principles of Program Analysis, by I —

Nielson, Nielson, and Hankin, is a bf}s;pnes
: : P
formal, mathematical presentation of "' a Analysis

different analysis methods

. A bit dense for the casual reader, but
good for introducing the academic field

